WIPP FULL SCALE HYDROSTATIC TESTING OF

55 Gallon Waste Disposal Drums

FINAL REPORT

SwRI Project 18.18197.03

Issue 1

Purchase Order 1493421

prepared by

Mark Orlowski

prepared for

Sandia National Laboratories 4100 National Parks Highway, Bldg. A Carlsbad, NM 88220

April 23, 2015

Southwest Research Institute[®]

6220 Culebra Road • Post Office Drawer 28510

San Antonio, Texas 78228-0510

WIPP FULL SCALE HYDROSTATIC TESTING OF

55 Gallon Waste Disposal Drums

FINAL REPORT

SwRI Project 18.18197.03

Issue 1

Purchase Order 1493421

prepared for

Sandia National Laboratories 4100 National Parks Highway, Bldg. A Carlsbad, NM 88220

April 23, 2015

Authored By:

Approved By:

Approved By:

Mark Orlowski Research Engineer, Structural Dynamics & Product Assurance

March R. Ehnstion

Mark Ehnstrom Principal QA Technologist, Audits & Surveillance

Joseph E. Crouch

P.E., Manager,

Ocean Simulation Laboratory

0 Release Control Record

Below is a table documenting the various changes recorded in this report. Each issuance of the report is clearly marked with the revision number and date of issue.

Issue No.	REASON FOR CHANGE	Date Issued
1	Original Release	04/23/15

Table 1: Revision Table

TABLE OF CONTENTS

0	RELEASE CONTROL RECORD	3
1	INTRODUCTION	5
2	TEST SETUP	5
3	TEST RESULTS	6
	Appendix I	8
	Appendix II	.22
	Appendix III	.28
	Appendix III	. 28

1 Introduction

Southwest Research Institute (SwRI[®]) was contracted by Sandia National Laboratories to perform hyperbaric testing on six 55-gallon waste disposal drums planned to be buried at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The hyperbaric tests were performed at the facilities of Southwest Research Institute (SwRI) from February 9-16, 2015. Testing was completed to a full scale hydrostatic test procedure provided by Sandia National Laboratories. The hyperbaric testing was performed in SwRI's 50-inch I.D., 6,000 psig test chamber. The tests consisted of subjecting each drum to a series of pressure unload/reload loops; the final confining pressure goal was 2,175 psi. Testing was completed under an NQA-1 compliant quality program.

2 Test Setup

An example of a test sample prior to testing is shown in Figure 1 in Appendix I. 3/8" Swagelok tubing was used for all plumbing connections. Haskell air-operated pumps were used to apply the confining pressure. The tests were conducted in fresh water, and ambient and chamber temperature were measured by thermocouples supplied by SwRI. A calibrated 3,000 psi pressure transducer and a spirometer LVDT were supplied by Sandia National Laboratories; the pressure transducer was setup to measure the hyperbaric pressure in the pressure vessel and the spirometer LVDT was connected to the sample vent to derive the change in volume of air inside the test sample as the hyperbaric pressure caused it to compress. Each test sample was mounted inside the pressure vessel by a test fixture. A photograph of a test sample inside the fixture is provided in Figure 2. A calibrated load cell supplied by SwRI was attached to the test fixture to measure the reduction of buoyancy as hyperbaric pressure increased. Instrumentation used to support the test program is listed in Table 2. The calibration sheets for the calibrated equipment are included in Appendix III. All test parameters were monitored, recorded, and electronically stored using a SwRI test computer logging software program written in LabVIEW. The LabVIEW program calculated the volume strain by dividing the change in volume by the initial volume. A camera located inside the hyperbaric chamber monitored and recorded each drum's physical condition during testing.

Make/Model	Item Measured	Asset #	Calibration Due Date	
Stellar Technology Model PNC710-500LBTN-159	Reduction in Buoyancy	020800	05/26/15	
FLUKE Model 714	Thermocouple Calibration	016644	02/21/15	
*Omega Engineering Model PX309-3KGV	Pressure	6662865	12/09/15	
*MHR Model 1000	Change in Volume	-	05/08/15	

Table 2: Calibrated Equipment

Note: Equipment marked with a * symbol was provided and calibrated by Sandia National Laboratories

3 Test Results

Water was injected into the hyperbaric chamber to produce a volumetric strain rate of the test sample of approximately 1E-4 sec⁻¹. When a volume strain of approximately 50% was reached, hyperbaric pressure was increased at an approximate rate of 87 psi/min. Pressurization rate was monitored and approved by Sandia personnel. Pressure unload/reload loops were performed at the intervals listed in Table 3. Each loop consisted of a rapid release in hyperbaric pressure followed by rapid increase to restore hyperbaric pressure to the original value. When hyperbaric pressure dropped uncontrollably, testing was paused and the sample was inspected for puncture or leak.

Loop #	Volumetric Strain _{Ev}	Hyperbaric Pressure (psi)
1	0.12	-
2	0.24	-
3	0.36	-
4	-	50
5	-	100
6	-	200
7	-	400
8	-	800
9	-	1500
10	-	2175

Table 3: Pressure Loop Intervals

The first drum tested was labeled WC-HC-NDF-01, and it was an unjacketed test sample. Pressure loops 1 through 5 were successfully completed before testing was stopped due to a leak at the top of the drum. The collapsed drum is shown in Figure 3. Pressure versus volume strain and pressure versus load measurements for this test are shown in Figure 8 and Figure 9, respectively.

The second sample tested was a jacketed drum labeled WC-HC-NDF-05. Pressure loops 1 through 4 were successfully completed before testing was paused due to a leak at the bung location. The damage is shown in Figure 4. Pressure versus volume strain and pressure versus load measurements for this test are shown in Figure 10 and Figure 11, respectively.

Based upon the inspection of the failure of WC-HC-NDF-05, Sandia personnel induced minor buckling at strategic locations on the unjacketed sample labeled WC-HC-NDF-02 in an attempt to avoid pinching at the bung location. The induced buckling successfully influenced the buckling pattern to avoid this failure mechanism which would not be experienced in real-world applications. This buckling pattern is shown in Figure 5. Hyperbaric pressure was applied until a leak occurred at 268 psi. Sandia personnel induced minor buckling in the two remaining test samples to similarly influence the buckling pattern.

The fourth sample tested was a jacketed drum labeled WC-HC-NDF-06. Pressure loops 1 through 7 were successfully completed before testing was stopped due to a pin hole on the side wall of the drum preventing further pressurization. The collapsed drum is shown in Figure 6. Pressure versus volume strain and pressure versus load measurements for this test are shown in Figure 12 and Figure 13, respectively.

The fifth sample tested was a jacketed drum labeled WC-HC-NDF-07. Pressure loops 1 through 8 were successfully completed before testing was stopped due to a leak in the drum. The collapsed drum is shown in Figure 7. Pressure versus volume strain and pressure versus load measurements for this test are shown in Figure 14 and Figure 15, respectively.

None of the test samples sustained a confining pressure of 2,175 psi before leaking.

Appendix I

Pictures and Pressure Graphs

Figure 1: Jacketed Drum before Hyperbaric Testing

Figure 2: Sample Mounted Inside Test Fixture

Figure 3: Test Sample WC-HC-NDF-01 after Hyperbaric Testing

Figure 4: Failure at Bung Location for Test Sample WC-HC-NDF-05

Figure 5: Test Sample WC-HC-NDF-02 after Hyperbaric Testing

Figure 6: Test Sample WC-HC-NDF-06 after Hyperbaric Testing

Figure 7: Test Sample WC-HC-NDF-07 after Hyperbaric Testing

Figure 8: Volume Strain Calculated during Hydrostatic Testing of WC-HC-NDF-01

Figure 9: Buoyancy Reduction during Hydrostatic Testing of WC-HC-NDF-01

Figure 10: Volume Strain Calculated during Hydrostatic Testing of WC-HC-NDF-05

Figure 11: Buoyancy Reduction during Hydrostatic Testing of WC-HC-NDF-05

Figure 12: Volume Strain Calculated during Hydrostatic Testing of WC-HC-NDF-06

Figure 13: Buoyancy Reduction during Hydrostatic Testing of WC-HC-NDF-06

Figure 14: Volume Strain Calculated during Hydrostatic Testing of WC-HC-NDF-07

Figure 15: Buoyancy Reduction during Hydrostatic Testing of WC-HC-NDF-07

Appendix II

Quality Program Documentation

Distributed: February 13, 2015

Quality Plan

(QP)

DISTRIBUTION LIST

QP 18.18197.03.103

Revision 0

Hyperbaric Testing for Four 55 Gallon Drums

M. Orlowski (18)	Copy No. 1
M. Lewis (CC30)	Copy No. 2
C. Hobson (CC30)	Copy No. 3
M. Ehnstrom (CC30)	Copy No. 4
P. Rodriguez (CC30)	Copy No. 5
IQS Records	Original

Note: A return receipt to Institute Quality Systems will not be required, as it is the responsibility of the holder of a controlled document to maintain that document and to ensure the most recent revision/change to that document has been retained.

SOUTHWEST RESEARCH INSTITUTE[®] INSTITUTE QUALITY SYSTEMS CONTRACT REVIEW RECORD AND QUALITY PLAN

(If Applicable) Quality Plan Number: 18197.03.103							
PROJECT INFORMATION							
1. Project Number: 18197.03.103 2. SwRI [®] Project Manager: Mark Orlowski							
3. Project Title/Description: Hyperbaric Testing	3. Project Title/Description: Hyperbaric Testing of Four 55 Gallon Drums						
4. Proposal Reference #: N/A	5. SwRI [®] Contract Admin: Vera Elizondo						
6. Start Date: 2/02/15	7. Est. Completion Date: 5/08/15						
8. Key Project Activities							
Design/Design Analysis	Software Development						
I Testing	Numerical Analysis						
Fabrication	Laboratory Testing/Analysis						
Field/Fleet Testing	Literature/Data Review						
Inspection/Evaluation	Prototype Development						
Other							
CU	CUSTOMER INFORMATION						
9. Customer: Sandia National Laboratories	10. Location: Albuquerque, NM						
11. Contract Number: 1493421 12. Customer Contact: Christina Vallejos							
COM	NTRACT REQUIREMENTS						
13. Quality System Requirement: QSM, Rev. 4	4;						
14. Applicable Specifications: ISO 9001:2008							
15 Additional Deguinemental Testing in accord							
13. Additional Requirements. Testing in accord	ance with client supplied test procedure.						
(For DoD/NASA Contracts)							
16. Administered by: N/A							
17. Inspection Point	Destination						
18. Acceptance Point	Destination						
19. DD-250/DD-1149 Yes	□ No						
20. MRB Authority Yes	□ No						
21. DCMA Delegation Yes No							

SwRI® Form QA-181-3 (Front)

QSM APPLICABILITY MATRIX					
QSM SECTION	APPLICABLE	APPLICABLE PROCEDURES			
Section 4.0 Quality Management System 4.1 General Requirements 4.2 Documentation Requirements	Yes □ No	Applicable Sections of the QSM Rev.4; SOP-410-01 Rev.10			
5.1 Management Responsibility 5.2 Customer Focus 5.3 Quality Policy 5.4 Planning 5.5. Responsibility, Authority and Communication 5.6 Management Review	Yes No	QSM 5 QSM 5.1 QSM 5.2 QSM 5.3 QSM 5.4 QSM 5.5 QSM 5.6			
Section 6.0 Resource Management 6.1 Provision of Resources 6.2 Human Resources 6.3 Infrastructure 6.4 Work Environment	☑ Yes No	SOP-600-01 Rev. 1 QSM 6.1; QSM 6.2; QSM 6.3; QSM 6.4			
Section 7.0 Product Realization 7.1 Planning of Product Realization 7.2 Customer-Related Processes 7.3 Design and Development 7.4 Purchasing 7.5 Production and Service Provision 7.6 Control of Monitoring and Measuring Equipment	X Yes No X Yes No	SOP-750-01 Rev. 5 SOP-750-01 Rev. 5 SOP-750-01 Rev. 5 N/A SOP-740-01 Rev. 2 N/A QSM 7.6; SOP-760-01 Rev.7 Control or Monitoring and Measuring Devices			
Section 8.0 Measurement, Analysis and Improvement 8.1 General 8.2 Measuring and Monitoring 8.3 Control of Nonconforming Product 8.4 Analysis of Data 8.5 Improvement	☑ Yes No	QSM 8 SOP-840-01 Rev. 3 SOP-840-01 Rev. 3 QSM 8.3, SOP-830-01, Rev.4 SOP-710-01, Rev.2 SOP-821-01, Customer Satisfaction Rev.6			

List Attachments: None

APPROVALS:
 Mary R. Shustion
 3/3/15

 Institute Quality Systems
 Date

 Mark Orlowski
 2/2/15

 Project Manager
 Date

SwRI® Form QA-181-3 (Back)

Quality Program Documentation

RECEIVING INSPECTION REPORT

SIL

Southwest Research Institute® Surveillance Report

IDENTIFICATION						
Submitted By: Ehnstrom, Mark R.	Date: 23-FEB-15	Report Number: SR Draft				
Division: 30 - INSTITUTE QUALITY SYSTEMS		Project Number: 18197.03.103				
Quality Program: 10CFR50, App. B,PQP - Nuclear		Project Title: QA SURVEILLANCE				
Surveillance Organization: 18 - MECHANICAL ENGINEERING 05.00: STRUCTURAL ENGINEERING						
Associated Report: N/A						
Surveillance Scope: Surveillance activities were performed during hydrostatic compression testing on full-scale waste packages for Sandia National Laboratories.						
References: Sandia National Laboratories Purchase Order 14 Procedure", SwRI Project Quality Plan 18.18197.	93421; Sandia National Laboratori 03.103; SwRI Program Quality Pla	es Test Procedure "Full Scale Hydrostatic Test n-Nuclear Revision 3; SwRI QMS Revision 4.				
Starting Date: 09-FEB-15		Ending Date: 12-FEB-15				
Interviewee(s)/Person(s) performing tests/procedure: Mark Orlowski						
Satisfactory Findings: Surveillance activities were performed during hydrostatic testing on full-scale waste packages for Sandia National Laboratories. Receiving inspection were performed on the three (3)jacketed and the four (4)un-jacketed packages. Reviews were performed on SwRI supplied test equipment prior to the start of testing. The equipment was determined to be within certification and appropriate for use. Sandia personnel were observed advising SwRI personnel on the rate of injection of the confining liquid during the test in accordance with paragraph 4.c of the test procedure. Surveillance confirmed the package configuration in the pressure vessel as required/described in the test procedure. The data acquisition system used a Lab-View program. Sandia Barrel Crush V0, written to collect data specific for this test. Surveillance activities confirmed that testing activities were being performed in accordance with test procedure requirements and no unsatisfactory items were identified.						
Unsatisfactory Findings:						
None						
Recommendations/Actions:						
None	None					
Equipment Calibration:						
Load Cell Asset# 020800 Calibration Date 11/26/14, Calibration Due 5/26/15						
Thermocouple Calibrator Asset# 016644 Calibration Date 2/21/14, Calibration Due 2/21/15						

© 2013 Southwest Research Institute ® Quality Reporting System, Release 2.4, Form: SR

02/23/15 09:34:02

1/1

Appendix III

Southwest Research Institute **Calibration Certificate**

NVLAP LAB CODE 200950.0

Cost Center: 18 MECHANICAL & MATERIALS ENGINEERING		Certificate Number:	1833	
Asset Number:	016644	Calibrated: 2	2/21/2014	
Description:	THERMOCOUPLE CALIBRATOR	Calibration Due: 2	2/21/2015	
Manufacturer:	FLUKE	Data Type: FOUN	D/LEFT	
Model Number:	714	Temp./RH: 74 F	7 38	
Serial Number:	1131008	Work Order # 403	121584	
Calibration Procedure:	FLUKE 71x SERIES			

This certificate documents traceability to the International System of Units (SI) through the National Institute of Standards and Technology (NIST) or other national metrology institute. The laboratory quality system is compliant to ISO/IEC 17025 2005, ANSI/NCSL Z540-1-1994 and relevant requirements of ISO 9001-2008. This certificate shall not be reproduced, except in full, without written approval of Southwest Research Institute Calibration Laboratory and shall not be used to claim product endorsement by SwRI® or any agency of the U.S. Government.

Results of this calibration relate only to the instrument described above at the time of calibration and does not imply any long term stability. Date due for recalibration is determined by the customer and does not imply the instrument will remain within limits, as any number of factors may cause an out of tolerance condition before this date.

Data type shall be interpreted as follows: Found-left - data recorded and no adjustment or repair was performed. As-left - data recorded after adjustment or repair was performed. As-found data are reviewed and the customer notified when the as-found results are other than pass and/or greater than 70 percent of the test limit. Pass? or Fail's indicate the measured value, plus or minus the expanded uncertainty, overlap the test limit and it is not possible to state Pass or Fail with a 95% confidence level. No statement of compliance with manufacturer or other specification is made or implied by this certificate. The customer has sole responsibility for determination of in/out-of-tolerance or compliance/noncompliance for the intended use of the instrument.

Measurement uncertainties are calculated in accordance with the methods described in the ISO *Guide to the Expression of Uncertainty in Measurement" (GUM), and reported in the attached measurement report as an expanded uncertainty with a coverage factor of k = 2 to approximately a 95% level of confidence.

Remarks:

Standards Used To Calibrate Equipment

Asset	Manufacturer	Model	Description	Cal. Due Date
001505	AGILENT-HP	3458A OPT 002	MULTIMETER	5/13/2014
0041 6 4	FLUKE	5500A/SC300	CALIBRATOR MULTI - PRODUCT	2/14/2015

las Reviewed By

Calibrated By: CER Metrology Technician

Institute Calibration Laboratory, Bldg. 64, San Antonio, TX 78227, ext. 5215

Page 1 of 1

Southwest Research Institute Calibration Laboratory Measurement Report

Work Order:	403121584	Mfr.	Fluke		Technician:	CER	off
Sorial No.	1121000	016644 Model 714		Colibrator	Cal Data:		14
Denarke:	1131008	туре	i nermocouple (Calibrator	Cal Date:	21-Feb	- 14
cemarks:							
Function/Range	Test Point	TI Reading	Difference	± Limit	± Uncertainty	Result	% Limit
Type J Read	°C	°C	°C	°C	°C		
	-200.0	-200.3	-0.3	0.6	0.44	Pass	50%
	0.0	-0.2	-0.2	0.4	0.18	Pass	50%
	800.0	799.9	-0.1	0.4	0.29	Pass	25%
	1200.0	1199.9	-0.1	0.5	0.29	Pass	20%
	°F	°F	°F	°F	°F		
	-320.0	-320.5	-0.5	1.4	0.7	Pass	36%
	32.0	31.7	-0.3	0.9	0.3	Pass	33%
	2000.0	1999.9	-0.1	0.9	0.5	Pass	11%
Type K Read	°C	°C	°C	°C	°C		
	-190.0	-190.1	-0.1	0.9	0.49	Pass	11%
	0.0	-0.1	-0.1	0.6	0.21	Pass	17%
	1300.0	1299.9	-0.1	0.6	0.47	Pass	17%
	۴F	۴F	۴F	۴F	۴F		
	-300.0	-300.4	-0.4	1.6	0.71	Pass	25%
	32.0	31.8	-0.2	1.0	0.36	Pass	20%
	2300.0	2299.8	-0.2	1.0	0.84	Pass	20%
mV Read	mVolts	mVolts	mVolts	mVolts	mVolts		
	-10.000	-10.000	0.000	0.012	0.015	Pass	0%
	30.000	30.000	0.000	0.025	0.015	Pass	0%
	75.000	75.000	0.000	0.021	0.015	Pass	0%
mV Source	mVolts	mVolts	mVolts	mVolts	mVolts		
	-10.000	-9.998	0.002	0.012	0.001	Pass	17%
	30.000	30.003	0.003	0.025	0.001	Pass	11%
	75.000	75.003	0.002	0.021	0.001	Pass	12%
Type J Source	°C	°C	°C	°C	°C		
1)000000000	-200.00	-199.60	0.40	0.60	0.33	Pass	67%
	0.00	0.23	0.23	0.40	0.17	Pass	58%
	800.00	800.15	0.15	0.40	0.27	Pass	37%
	1200.00	1200.14	0.14	0.50	0.27	Pass	28%
		END	OF REPORT			-	

U:\CC30\ICL\Data Sheets\Electrical\Fluke 714 (5500A 3458A)_17 Feb 12

Page 1 of 1

Southwest Research Institute Calibration Certificate

Cost Center:	18 MECHANICAL & MATERIALS ENGINEERING	Certificate Number: 20844
Asset Number:	020800	Calibrated: 11/26/2014
Description:	LOAD CELL	Calibration Due: 5/26/2015
Manufacturer:	STELLAR TECHNOLOGY	Data Type: FOUND / LEFT
Model Number:	PNC710-500LBTN-159	Temp./RH: 68 °F / 40 %
Serial Number:	1110923	Work Order # 403127714
Calibration Procedure:	LOAD CELLS	

This certificate documents traceability to the International System of Units (SI) through the National Institute of Standards and Technology (NIST) or other national metrology institute. The laboratory quality system is compliant to ISO/IEC 17025 2005, ANSI/NCSL Z540-1-1994 and relevant requirements of ISO 9001-2008. This certificate shall not be reproduced, except in full, without written approval of Southwest Research Institute Calibration Laboratory and shall not be used to claim product endorsement by SwRI® or any agency of the U.S. Government.

Results of this calibration relate only to the instrument described above at the time of calibration and does not imply any long term stability. Date due for recalibration is determined by the customer and does not imply the instrument will remain within limits, as any number of factors may cause an out of tolerance condition before this date.

Data type shall be interpreted as follows: Found-left - data recorded and no adjustment or repair was performed. As-left - data recorded after adjustment or repair was performed. As-found data are reviewed and the customer notified when the as-found results are other than pass and/or greater than 70 percent of the test limit. Pass? or Fail? indicate the measured value, plus or minus the expanded uncertainty, overlap the test limit and it is not possible to state Pass or Fail with a 95% confidence level. No statement of compliance with manufacturer or other specification is made or implied by this certificate. The customer has sole responsibility for determination of in/out-oftolerance or compliance/noncompliance for the intended use of the instrument.

Measurement uncertainties are calculated in accordance with the methods described in the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM) as an expanded uncertainty with a coverage factor of k = 2 to approximately a 95% level of confidence. See Remarks or attached Measurement Report with the same Work Order number for data.

Remarks: Sensitivity 2.961 mV/V

Standards Used To Calibrate Equipment

Asset 005090	Manufacturer RICE LAKE	Model 50 LB	Description WEIGHT CLASS F	Cal. Due Date 8/21/2015
005093	RICE LAKE	50 LB	WEIGHT CLASS F	12/12/2015
007001	AGILENT-HP	3458A OPT 002	MULTIMETER	5/16/2015
007514	CDI	50 LB	WEIGHT HANGER CLASS F	5/9/2015
008188	RICE LAKE	50 LB	WEIGHT CLASS 6	7/18/2015
015274	RICE LAKE	50 LB	WEIGHT CLASS F	11/17/2016

1m Approved By

Calibrated By: SRK Metrology Technician

Page 1 of 2

Institute Calibration Laboratory, Bldg. 64, San Antonio, TX 78227, ext. 5215

Southwest Research Institute

Calibration Certificate

015276	RICE LAKE	50 LB	WEIGHT CLASS F	11/17/2016
015278	RICE LAKE	50 LB	WEIGHT CLASS F	11/20/2016
015279	RICE LAKE	50 LB	WEIGHT CLASS F	11/20/2016
015280	RICE LAKE	50 LB	WEIGHT CLASS F	11/20/2016
015281	RICE LAKE	50 LB	WEIGHT CLASS F	11/20/2016

lint Approved By

Calibrated By: SRK Metrology Technician

Institute Calibration Laboratory, Bldg. 64, San Antonio, TX 78227, ext. 5215

Page 2 of 2

Southwest Research Institute Calibration Laboratory Measurement Report

Work Order:	403127714	Mfr:	Stellar Technolo	gy	Technician:	SRK	
Asset No.:	020800	Model:	PNC710-500LB	TN-159	Type Data:	Found-	left
Serial No.:	1110923	Type:	Load Cell		Cal Date:	26-Nov	-14
Remarks: Applied weigh	t corrected for lo	ocal gravity.					
Sensitivity:	2.961	mV/V			Excitation Voltage	10.0	V
Function/Range	Test Point	TI Read	Difference	± Limit	± Uncertainty	Result	% Limit
Tension (lbf)	mV	mV	mV	mV	mV		
49.9	2.96	2.93	-0.03	0.75	0.077	Pass	4%
99.8	5.91	5.88	-0.03			Pass	4%
149.8	8.87	8.83	-0.04			Pass	5%
199.7	11.83	11.78	-0.05			Pass	6%
249.6	14.78	14.74	-0.05			Pass	6%
299.5	17.74	17.68	-0.06			Pass	7%
349.5	20.70	20.64	-0.05			Pass	7%
399.4	23.65	23.59	-0.06			Pass	9%
449.3	26.61	26.55	-0.05			Pass	7%
499.2	29.57	29.50	-0.07			Pass	9%
		END	OF REPORT				

U:\CC30\ICL\Data Sheets\Mechanical\Stellar Technology PNC710 500 lbf Tension_21 May 14.xlsx

Page 1 of 1

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Accredited by the National Voluntary Laboratory Accreditation Program for the scope of accreditation under Lab Code 105002-0

Calibration Certificate

Document #: 6662865_11638925

Item Identification

Asset Number Description Model Serial # Manufacturer Customer Asset Id Purchase Order Customer 6662865 Transducer,Pressure PX309-3KGV 050109D060 Omega Engineering, Inc.

Geomechanics 06914

Custodian Location Date of Receipt Dates Tested (Start – End) Date Approved Calibration Expiration Date Flint, Gregory Mark SNLNM/TA1/849/1 November 19, 2014 November 28, 2014 - November 28, 2014 December 09, 2014 December 09, 2015

Calibration Description

Calibration Lab Calibration Procedure, rev.

Temperature Humidity Barometric Pressure As Found Condition As Left Condition Software Used Tamper Seal PSL-PRESSURE PSL-PVL-CP-6210-001-V01, 10K Bench, High Pressure Calibration System 23 deg C 40 %RH N/A mmHg PASS PASS None None

> Page 1 of 4 6662865_11638925

Calibration Sheets

Page 34 of 39

galvn

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Accredited by the National Voluntary Laboratory Accreditation Program for the scope of accreditation under Lab Code 105002-0

Calibration Results

As Found / As Left

DUT Full Scale Pressure (psi)	3000	New Sensitivity Coefficient	0.001679
DUT Full Scale Output Signal (V)	5.04248	((V-zero)/psi)	
Measured Zero (V)	0.25	(Sen ⁻¹)	595.4449

(psi = (Inverse Sensitivity) * (V - Zero) V = (Sensitivity * psi) + Zero

	Gauge Pressure						
Reference Pressure	DUT Raw	Excitation	DUT Corrected using new fit	Error	Assigned Tolerance ±	Status	
psi	V	V	psi	% Full Scale	% Full Scale	Pass/Fail	
300.0500	0.5084	9.9955	299.9613	-0.003	0.25	Pass	
600.0300	1.0121	9.9955	599.9167	-0.004	0.25	Pass	
899.9800	1.5159	9.9955	899.9077	-0.002	0.25	Pass	
1200.0000	2.0199	9.9955	1199.9584	-0.001	0.25	Pass	
1499.9900	2.5237	9.9955	1499.9971	0.000	0.25	Pass	
1799.9900	3.0275	9.9955	1799.9703	-0.001	0.25	Pass	
2100.0200	3.5313	9.9955	2099.9614	-0.002	0.25	Pass	
2400.0200	4.0353	9.9956	2400.0358	0.001	0.25	Pass	
2699.9900	4.5390	9.9955	2699.9436	-0.002	0.25	Pass	
2999.9500	5.0425	9.9955	2999.7679	-0.006	0.25	Pass	
2999.9400	5.0425	9.9955	2999.7679	-0.006	0.25	Pass	
2699.9800	4.5388	9.9955	2699.8781	-0.003	0.25	Pass	
2399.9600	4.0351	9.9955	2399.9525	0.000	0.25	Pass	
2099.9800	3.5317	9.9955	2100.1758	0.007	0.25	Pass	
1799.9800	3.0279	9.9955	1800.2204	0.008	0.25	Pass	
1500.0000	2.5242	9.9955	1500.2531	0.008	0.25	Pass	
1199.9800	2.0203	9.9955	1200.2085	0.008	0.25	Pass	
899.9900	1.5164	9.9956	900.1936	0.007	0.25	Pass	
599.9500	1.0124	9.9955	600.0774	0.004	0.25	Pass	
299.9300	0.5086	9.9955	300.0744	0.005	0.25	Pass	

Page 2 of 4 6662865_11638925

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Accredited by the National Voluntary Laboratory Accreditation Program for the scope of accreditation under Lab Code 105002-0

Calibration Method

This gauge was tested using a comparison technique. The standard used to determine the reference pressure was a Quartz Reference Pressure Transducer (Q-RPT) Pressure Controller/Calibrator. This standard was calibrated by Sandia National Laboratories Primary Standards Lab using Dead Weight Piston Gauges using a coverage factor at k=2.

Calibration Note

Meets customer requested tolerance of \pm 0.25% of full scale from 300 psig to 3000 psig with a Test Accuracy Ratio (TAR) of > 4:1.

This device is expected to remain within the stated measurement tolerance through the calibration interval.

Equipment (Standard) Used

Asset #	Description	Model	Expires
6651361	System, Data, Acquisition	34970A	April 21, 2015
6651346	Supply, Power, DC	6633B	June 09, 2015
6652763	Calibrator, Pressure	PPC4 A700K/A100K	January 14, 2015

Page 3 of 4 6662865_11638925

Sandia National Laboratories, Albuquerque, New Mexico 87185-0665

Accredited by the National Voluntary Laboratory Accreditation Program for the scope of accreditation under Lab Code 105002-0

Traceability

Values and the associated uncertainties supplied by the Primary Standards Lab (PSL) are traceable to the SI through one or more of the following:

1. Reference standards whose values are disseminated by the National Institute of Standards and Technology (United States of America) or, where appropriate, to the national metrological institute of another nation participating in the CIPM MRA;

 Reference standards whose values are disseminated by a laboratory that has demonstrated competence, measurement capability, and traceability for those values;

3. The accepted value(s) of fundamental physical phenomena (intrinsic standards);

Ratio(s) or other non-maintained standards established by either a self-calibration and/or a direct calibration technique;
 Standards maintained and disseminated by the PSL in special cases and where warranted, such as consensus standards where no national or international standards exist;

Note 1: This certificate or report shall not be reproduced except in full, without the advance written approval of the Primary Standards Lab at Sandia National Laboratories.

Note 2: For National Voluntary Laboratory Accreditation Program (NVLAP) accredited capabilities, the PSL at Sandia National Laboratories is accredited by NVLAP for the specific scope of accreditation under Laboratory Code 105002-0. This certificate or report shall not be used by the customer to claim product endorsement by NVLAP, the Primary Standards Laboratory, Sandia National Laboratories or any agency of the U.S. Government.

Note 3: The as received condition of the standard, set of standards, or measurement equipment described herein was as expected, unless otherwise noted in the body of the certificate or report.

Note 4: The presence of names and titles under "Authorization" are properly authenticated electronic signatures conforming to the equivalent identification signatory requirements of ISO 17025:2005 5.10.2.j.

Authorization

Calibrated By:

Sandoval, Ronald Steven Metrologist Approved By:

Benner, Mark S. Technical Project Leader

End-of-Document

Page 4 of 4 6662865_11638925

Did UUT Pass Acceptance Criteria per For: 849 Geolab Expiration Date 5/8/2015 UUT Model#: MHR-1000 Yes 5/8/2015 UUT s/n: 706 Cal Date 5/8/201 Conditioner: NI-SCXI-1315 settings: analog system output= +/- 5 VDC By GF Sensitivity 0.77 mV/V/in Excitation (vex) 3 Org 6914 Max 1000m Excitation 10k Org 6914 Temp 24.8°C Standards used: LVDT calibrator, File SNL-7716, exp 8/20/15 RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	4
For. 645 Geolab SF 12-26 KeV 07 Its Stat2013 UUT Model#: MHR-1000 UUT s/n: 706 Cal Date 5/8/201 Conditioner: NI-SCXI-1315 settings: analog system output= +/- 5 VDC By GF Sensitivity 0.77 mV/V/in Excitation (vex) 3 Org 6914 Max 1000m Excitation 10k Temp 24.8*C Standards used: LVDT calibrator, File SNL-7716, exp 8/20/15 RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 Temp/Hum, Rotronic s/n 60189152/150014, exp 2/24/15 UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	4
UUT s/n: 706 Cal Date 5/8/201 Conditioner: NI-SCXI-1315 settings: analog system output= +/- 5 VDC By GF Sensitivity 0.77 mV/V/in Excitation (vex) 3 Org 6914 Max 1000m Excitation 10k Temp 24.8*C Standards used: LVDT calibrator, File SNL-7716, exp 8/20/15 RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 Temp/Hum, Rotronic s/n 60189152/150014, exp 2/24/15 UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	4
Conditioner: NI-SCXI-1315 settings: analog system output= +/- 5 VDC By GF Sensitivity 0.77 mV/V/in Excitation (vex) 3 Max 1000m Excitation 10k Min -1000m Frequency By GF Temp 24.8*C Standards used: LVDT calibrator, File SNL-7716, exp 8/20/15 RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 UUT Sensitivity Other time 0.00165 in	
Sensitivity 0.77 mV/V/in Excitation (vex) 3 Max 1000m Excitation 10k Min -1000m Frequency 0/r Temp 24.8*C Standards used: LVDT calibrator, File SNL-7716, exp 8/20/15 0/r RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 Temp/Hum, Rotronic s/n 60189152/150014, exp 2/24/15 UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	
Max 1000m Excitation 10k Min -1000m Frequency 10k Temp 24.8*C Standards used: LVDT calibrator, File SNL-7716, exp 8/20/15 RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 Temp/Hum, Rotronic s/n 60189152/150014, exp 2/24/15 UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	
Min -1000m Frequency 10k Temp 24.8*C Standards used: LVDT calibrator, File SNL-7716, exp 8/20/15 RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 Temp/Hum, Rotronic s/n 60189152/150014, exp 2/24/15 UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	
Temp 24.8*C Standards used: LVDT calibrator, File SNL-7716, exp 8/20/15 RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 Temp/Hum, Rotronic s/n 60189152/150014, exp 2/24/15 UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	
Temp 24.8*C Standards used: LVDT calibrator, File SNL-7716, exp 8/20/15 RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 Temp/Hum, Rotronic s/n 60189152/150014, exp 2/24/15 UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	
RH% 18.5 Multimeter, HP 34401A s/n US36034147, exp 2/5/15 Temp/Hum, Rotronic s/n 60189152/150014, exp 2/24/15 UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	
UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	
UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	
UUT Sensitivity 0.221474 in/v Std. Sensitivity 0.050162 in/v	
Offect: 0.00165 in	
Standard recovered Corpo Plack Calculated Calculated Dovisition	
Standard measured Gage Block Calculated Deviation	l.
output output Osed Standard Dispi dispi % full sca	lię
0.000 0.0000 (center) 0.5000 0.00002 0.00165	J.16
2.001 0.4662 0.5000 0.10035 0.10491	J.45
4.001 0.9251 0.5000 0.20068 0.20653 0	J.58
	J.51
) 28
	0.00
0.007 <u>2.2504</u> (block chg) 0.0000 0.50035 0.50227	1.13
	0.45
	0.30
	0.51
	0.71
	0.40
	0.37
	0 12
	0 10
	0.24
0.000 <u>2.2005</u> 0.0000 0.50002 0.50000 0.50002	0.09
8 000 1 8184 0 5000 0 40130 0 40438 0	0.31
6 000 1 3757 0 5000 0 30098 0 30633	0.53
4 001 0 9260 0 5000 0 20057 0 20672	0.60
2 000 0 4665 0 5000 0 10034 0 10495	0.46
0.000 0.000 0.000	0.17
0.001 0.0003 (center) 0.5000 0.00004 0.00171 (c	0.00
0.001 0.0003 (center) 0.5000 0.00004 0.00171 0	
0.001 0.0003 (center) 0.5000 0.00004 0.00171 0 -2.000 -0.4604 0.5000 -0.10034 -0.10031 0 -4.001 -0.9188 0.5000 -0.2068 -0.20185 -0.20185	3 12
0.001 0.0003 (center) 0.5000 0.00004 0.00171 0 -2.000 -0.4604 0.5000 -0.10034 -0.10031 0 -4.001 -0.9188 0.5000 -0.2068 -0.20185 -(-6.000 -1.3747 0.5000 -0.3098 -0.30281 -(2 12

-10.000	-2.2849		0.5000	-0.50162	-0.50440	-0.28
-0.086	-2 2852	(block chg)	1.0000	-0.50431	-0.50446	-0.02
-2 000	-2.7203		1.0000	-0.60032	-0.60083	-0.05
-4.001	-3 1706		1.0000	-0 70069	-0.70056	0 01
-6 001	-3 6267		1.0000	-0.80101	-0.80157	-0.06
-8 001	-4.0876		1.0000	-0.90134	-0.90365	-0 23
-10.001	-4 5292		1.0000	-1.00167	-1.00145	0.02
-8.000	-4.0867		1.0000	-0.90131	-0.90345	-0 21
-6.000	-3.6260		1.0000	-0.80099	-0 80142	-0.04
-4.000	-3.1697		1.0000	-0.70066	-0.70036	0.03
-2.000	-2.7196		1.0000	-0.60033	-0 60067	-0.03
0.000	-2.2649		1.0000	-0.50000	-0.49997	0.00
-9.911	-2.2647	(block chg)	0 5000	-0.49717	-0.49992	-0.28
-8.000	-1.8308		0 5000	-0.40130	-0.40383	-0.25
-6.001	-1.3741		0.5000	-0.30100	-0.30268	-0.17
-4.000	-0.9182		0 5000	-0.20065	-0.20171	-0.11
-2 000	-0.4600		0.5000	-0.10034	-0.10022	0.01
0.001	0.0004	(center)	0.5000	0 00003	0.00174	0.17

UUT Model#: MHR-1000 UUT s/n: 706

